Hello everyone.
I will transcribe here a very interesting article of Mr Calestous Juma, Professor of the Practice of International Development and Director of the Agricultural Innovation Project at Harvard Kennedy School, Harvard University, Author of The New Harvest: Agricultural Innovation in Africa1 (Oxford University Press, 2011).
The article is a reflexion on the ideal definition and role that universities could and should play in the ignition of the huge potential that Africa agriculture has. I hope you find it exciting and interesting; your comments are more than welcome.
Unlike existing universities, the new institutions would work closely with farmers and agribusiness which would be a source of ideas on curricula, pedagogy, choice of students and location.
Even before the global financial and fuel crises hit, hunger was increasing in Africa. In 1990, over 150 million Africans were hungry; as of 2008, the number had increased to nearly 250 million. Starting in 2004, the proportion of undernourished began increasing, reversing several decades of decline, prompting 100 million people to fall into poverty.
One-third of people in sub-Saharan Africa are chronically hungry—many of whom are smallholder farmers. High food prices in local markets price out the poorer consumers—forcing them to purchase less food and less nutritious food, as well as to divert spending from education and health and to sell their assets. This hunger-weak agricultural sector cycle is self-perpetuating.
Over the last 25 years, growth in agricultural GDP in Africa has averaged approximately 3% but has varied significantly among countries. Growth per capita, a proxy for farm income, was basically zero in the 1970s and negative from the 1980s into the 1990s. Six countries experienced negative per capita growth.
Productivity has been basically stagnant over 40 years—despite significant growth in other regions, particularly Asia, thanks to the Green Revolution. Different explanations derive from a lack of political prioritization, underinvestment, and ineffective policies. The financial crisis has exacerbated this underinvestment, as borrowing externally has become more expensive, credit is less accessible, and foreign direct investment has declined.
Only 4% of Africa’s crop area is irrigated, compared to 39% in South Asia. Much of rural Africa lacks passable roads, translating to high transportation costs and trade barriers. Cropland per agricultural population has been decreasing for decades. Soil infertility is a result of degradation: nearly 75% of the farmland is affected by the excessive extraction of soil nutrients.
Fertilizer use in Africa is less than 10% of the world average of 100 kg. Just five countries (Ethiopia, Kenya, Nigeria, South Africa, and Zimbabwe) account for about two-thirds of the fertilizer consumed in Africa. On the average, sub-Saharan African farmers use 13 kg of nutrients per hectare of arable and permanent cropland, whereas the rate in the Middle East and North Africa is 71 kg.
Part of the reason why fertilizer usage is so low is because of the high costs of imports and transportation: fertilizer in Africa is two to six times the average world price. This results in low usage of improved seed: as of 2000, about 24% of the cereal-growing area used improved varieties, compared to 85% in East Asia and the Pacific. As of 2005, 70% of wheat crop area and 40% of maize crop area used improved seeds, a significant improvement.
Addressing these challenges will require considerable investment in agricultural science, technology and engineering. The challenge for Africa is developing appropriate institutional arrangements through which existing scientific and technical knowledge can be transmitted from research facilities to farms. Such institutional innovation could form a basis for renewed cooperation between Nordic countries and Africa.
Functions of new agricultural universities
The challenges facing African agriculture will require fundamental changes in the way universities train their students. It is notable that most African universities do not specifically train agriculture students to work on farms in the same way medical schools train students to work in hospitals. Part of the problem arises from the traditional separation between research and teaching—the former is carried out in national research institutes and the latter in universities.
National Agricultural Research Institutes (NARIs) operate a large number of research programs that provide a strong basis for building new initiatives aimed at upgrading their innovative capabilities. In effect, what is needed is to strengthen the educational, commercialization, and extension functions of the NARIs.
More specifically, clustering these functions would result in dedicated research universities whose curriculum would be modeled along full value chains of specific commodities. For example, innovation universities located in proximity to coffee production sites should develop expertise in the entire value chain of the industry.
This could be applied to other crops as well as to livestock and fisheries. Such dedicated universities would not have a monopoly over specific crops but should serve as opportunities for learning how to connect higher education to the productive sector.
The new universities need to improve their curricula to make them relevant to the communities in which they are located. More important, they should serve as critical hubs in local innovation systems or clusters.
The recent decision by Moi University in western Kenya to acquire an abandoned textile mill and revive it for teaching purposes is an example of such an opportunity. Such connections can be fostered without owning the facilities.
Many of the NARIs are located in the proximity of a wide range of productive facilities with which they can foster long-term working relations. They can also branch into new knowledge-based fields. For example, NARIs located close to breweries can build up expertise in biotechnology using fermentation knowledge as a foundation. Similar arrangements can be created with other agro-based industries such as sugar mills and fish factories.
Roadmap for implementation
Many models show how to focus on agricultural training as a way to improve practical farming activities. Ministries of agriculture and farming enterprises in African countries should create entrepreneurial universities, polytechnics, and vocational schools that address agricultural challenges. Such institutions could link up with counterparts in developed or emerging economies as well as institutions providing venture capital and start to serve as incubators of rural enterprises.
Establishing such institutions will require reforming the curriculum, improving pedagogy, and granting greater management autonomy. They should be guided by the curiosity, creativity, and risk-taking inclination of farmers.
The tasks laid out above will take considerable dedication, courage and commitment. Such efforts need to be recognized and rewarded. One way to do so is to institute Agricultural Innovation Prizes for outstanding contributions to strengthening agricultural research in African countries. The prizes would recognize achievements in research, teaching, commercialization and extension.
Conclusion
Over the last decade considerable work has been done to redefine the role of government in agricultural research, decentralize research activities, increase stakeholder participation, identify new financial instruments, and strengthen system-wide linkages. These measures have been purposed on an incremental basis. They have indeed yielded commendable results.
The next challenge, however, is to build on these achievements and pursue bold steps aimed at upgrading the status and performance of agricultural institutes by creating genuine innovation systems that involve research, training, extension, and commercialization.
This process will be nontrivial and will require bold political action involving high-level leaders. The efforts will come with political risks and debate. Maintaining the status quo, however, is riskier than experimenting with new models. Mistakes will be made. But as Albert Einstein said, “Anyone who has never made a mistake has never tried anything new.”